Weakly Compatible Maps in Complex Valued G- Metric Spaces

نویسندگان

  • Balbir Singh
  • Vishal Gupta
چکیده

Azam, A Fisfer, B, Khan, M: Common fixed point theorems in complex valued metric Spaces. Number. Funct. Anal. Optim. . 32(3), 243-253 (2011). B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutt Math. Soc. 84 (1992), 329-336. B. C. Dhage, " On generalized metric spaces and topological structure. II," Pure and applied Mathematika Sciences, Vol. 40, no. 1-2,pp. 37-41,1994. B. C. Dhage, " A common fixed point principle in D-metric spaces. " Bulletin of the Calcutta Mathematical Society, vol. 91, no. 6, pp. 475-480, 1999. B. C. Dhage, " Generalized metric spaces and topological structure I," Annalele Stintifice ale Universitatii Al. l Cuza, vol. 46, no. 1, pp. 3-24, 2000. Balbir Singh, Vishal Gupta and Sanjay Kumar, " Contraction Principle in Complex valued G-metric spaces" Journal of Complex system (under communication). G. Jungck, Common fixed point for non continuous non self mappings on non metric

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Compatible Maps in Complex Valued G- Metric Spaces

In this paper, we introduce the notion of complex valued Gmetric spaces and prove a common fixed point theorem for weakly compatible maps in this newly defined spaces. Mathematics Subject Classification (2000): 47H10, 54H25.

متن کامل

A Ciric-type common fixed point theorem in complete b-metric spaces

In this paper, we define the concept of compatible and weakly compatible mappings in b-metric spaces and inspired by the Ciric and et. al method, we produce appropriate conditions for given the unique common fixed point for a family of the even number of self-maps with together another two self-maps in a complete b-metric spaces. Also, we generalize this common fixed point theorem for a seq...

متن کامل

A common fixed point theorem for weakly compatible maps satisfying common property (E:A:) and implicit relation in intuitionistic fuzzy metric spaces

In this paper, employing the common property ($E.A$), we prove a common fixed theorem for weakly compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar [S. Kumar, {it Common fixed point theorems in Intuitionistic fuzzy metric spaces using property (E.A)}, J. Indian Math. Soc., 76 (1-4) (2009), 94--103] and C. Alaca et al...

متن کامل

Common fixed point theorems for occasionally weakly compatible mappings in Menger spaces and applications

In 2008, Al-Thaga and Shahzad [Generalized I-nonexpansive self-maps and invariant approximations, Acta Math. Sinica 24(5) (2008), 867{876]introduced the notion of occasionally weakly compatible mappings (shortly owcmaps) which is more general than all the commutativity concepts. In the presentpaper, we prove common xed point theorems for families of owc maps in Mengerspaces. As applications to ...

متن کامل

Six Maps with a Common Fixed Point in Complex Valued Metric Spaces

Recently, Sandeep Bhatt et.al [12] proved common fixed theorem for four self maps satisfying some contraction principles on a complex valued metric spaces. In this manuscript we obtain a common fixed point theorem for six maps in complex valued metric spaces having commuting and weakly compatible. Our theorem generalizes and extends the result of S. Bhatt et.al[12]. Mathematics Subject Classifi...

متن کامل

A COMMON FIXED POINT THEOREM FOR SIX WEAKLY COMPATIBLE MAPPINGS IN M-FUZZY METRIC SPACES

In this paper, we give some new definitions of M-fuzzy metric spaces and we prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in complete M-fuzzy metric spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017